INTELIGENCIA ARTIFICIAL
La inteligencia artificial (IA) es la base a partir de la cual se imitan los procesos de inteligencia humana mediante la creación y la aplicación de algoritmos creados en un entorno dinámico de computación. O bien, dicho de forma sencilla, la IA consiste en intentar que los ordenadores piensen y actúen como los humanos.
Cuanto mayor sea el parecido al comportamiento humano que queremos conseguir, más datos y capacidad de procesamiento se necesitará.
¿Cómo se originó la inteligencia artificial?
Desde al menos el siglo I a.C., los humanos se han planteado la posibilidad de crear máquinas que emiten al cerebro humano. Ya en la época moderna, John McCarthy acuñó el término «inteligencia artificial» en 1955. En 1956, McCarthy y algunos otros organizaron una conferencia denominada «Dartmouth Summer Research Project on Artificial Intelligence». Este encuentro dio lugar a la creación del aprendizaje automático, el aprendizaje profundo, el análisis predictivo y, ahora, el análisis prescriptivo. También dio lugar a un campo de estudio totalmente nuevo: la ciencia de los datos.
¿Por qué es importante la inteligencia artificial?
Hoy en día, la cantidad de datos que se genera, tanto por parte de los humanos como por parte de las máquinas, supera en gran medida la capacidad que tienen las personas de absorber, interpretar y tomar decisiones complejas basadas en esos datos. La inteligencia artificial supone la base de todo el aprendizaje automático y el futuro de todos los procesos complejos de toma de decisiones. Por ejemplo, la mayoría de los humanos pueden averiguar cómo no perder cuando juegan al tres en raya, aunque haya 255 168 movimientos únicos, de los cuales 46 080 terminan en tablas. Muchos menos podrían llegar a ser grandes maestros de las damas, con más de 500 x 1018 o 500 trillones de posibles movimientos diferentes. Los ordenadores son extremadamente eficientes a la hora de calcular estas combinaciones y permutaciones para llegar a la mejor decisión. La IA (y su evolución lógica del aprendizaje automático) y el aprendizaje profundo constituyen los cimientos del futuro en la toma de decisiones empresariales.
Casos prácticos de inteligencia artificial
La IA se aplica en nuestro día a día, como en los servicios financieros, la detección de fraude, las predicciones de compras en comercios y en las interacciones de asistencia al cliente en línea. Estos son algunos ejemplos:
- Detección del fraude. El sector de servicios financieros utiliza la inteligencia artificial de dos formas diferentes. La clasificación inicial de aplicaciones de crédito utiliza la IA para saber cuál es la capacidad crediticia. Para supervisar y detectar las transacciones de tarjeta fraudulentas al realizar los pagos en tiempo real se necesitan motores de IA más avanzados.
- Ayuda virtual para clientes (VCA). Los centros de llamadas usan VCA para predecir y responder a las consultas de los clientes sin interacción humana. El reconocimiento de voz, junto con un diálogo humano simulado, es el primer punto de interacción en una consulta al servicio al cliente. En las consultas de mayor dificultad se redirigen a una persona con la que se pueda interactuar directamente.
- Cuando una persona inicia un diálogo en una página web mediante un chat (bot conversacional), la interacción se realiza a menudo con un ordenador que ejecuta un sistema de IA especializado. Si se llega a un punto en el que el bot conversacional no puede interpretar o abordar la pregunta, interviene una persona que se comunicará directamente con ella. Estas instancias no interpretativas alimentan un sistema de computación de aprendizaje automático que mejora la aplicación de la IA en las interacciones futuras.
La IA se aplica en nuestro día a día, como en los servicios financieros, la detección de fraude, las predicciones de compras en comercios y en las interacciones de asistencia al cliente en línea. Estos son algunos ejemplos:
- Detección del fraude. El sector de servicios financieros utiliza la inteligencia artificial de dos formas diferentes. La clasificación inicial de aplicaciones de crédito utiliza la IA para saber cuál es la capacidad crediticia. Para supervisar y detectar las transacciones de tarjeta fraudulentas al realizar los pagos en tiempo real se necesitan motores de IA más avanzados.
- Ayuda virtual para clientes (VCA). Los centros de llamadas usan VCA para predecir y responder a las consultas de los clientes sin interacción humana. El reconocimiento de voz, junto con un diálogo humano simulado, es el primer punto de interacción en una consulta al servicio al cliente. En las consultas de mayor dificultad se redirigen a una persona con la que se pueda interactuar directamente.
- Cuando una persona inicia un diálogo en una página web mediante un chat (bot conversacional), la interacción se realiza a menudo con un ordenador que ejecuta un sistema de IA especializado. Si se llega a un punto en el que el bot conversacional no puede interpretar o abordar la pregunta, interviene una persona que se comunicará directamente con ella. Estas instancias no interpretativas alimentan un sistema de computación de aprendizaje automático que mejora la aplicación de la IA en las interacciones futuras.
texto tomado de:https://www.netapp.com/es/artificial-intelligence/what-is-artificial-intelligence/
imágenes tomadasde:https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Artificial_Intelligence_%26_AI_%26_Machine_Learning_-_30212411048.jpg/1200px-Artificial_Intelligence_%26_AI_%26_Machine_Learning_-_30212411048.jpg ➤https://cta.org.co/wp-content/uploads/2021/03/ARTICULO-WEB-IA-2154x1077.jpg,➤https://attachmedia.com/blog/wp-content/uploads/2020/11/inteligencia-artificial-1.png
No hay comentarios.:
Publicar un comentario